Reconstruction of fluorescence molecular tomography with a cosinoidal level set method

نویسندگان

  • Xuanxuan Zhang
  • Xu Cao
  • Shouping Zhu
چکیده

BACKGROUND Implicit shape-based reconstruction method in fluorescence molecular tomography (FMT) is capable of achieving higher image clarity than image-based reconstruction method. However, the implicit shape method suffers from a low convergence speed and performs unstably due to the utilization of gradient-based optimization methods. Moreover, the implicit shape method requires priori information about the number of targets. METHODS A shape-based reconstruction scheme of FMT with a cosinoidal level set method is proposed in this paper. The Heaviside function in the classical implicit shape method is replaced with a cosine function, and then the reconstruction can be accomplished with the Levenberg-Marquardt method rather than gradient-based methods. As a result, the priori information about the number of targets is not required anymore and the choice of step length is avoided. RESULTS Numerical simulations and phantom experiments were carried out to validate the proposed method. Results of the proposed method show higher contrast to noise ratios and Pearson correlations than the implicit shape method and image-based reconstruction method. Moreover, the number of iterations required in the proposed method is much less than the implicit shape method. CONCLUSIONS The proposed method performs more stably, provides a faster convergence speed than the implicit shape method, and achieves higher image clarity than the image-based reconstruction method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast System Matrix Calculation in CT Iterative Reconstruction

Introduction: Iterative reconstruction techniques provide better image quality and have the potential for reconstructions with lower imaging dose than classical methods in computed tomography (CT). However, the computational speed is major concern for these iterative techniques. The system matrix calculation during the forward- and back projection is one of the most time- cons...

متن کامل

High-Performance Fluorescence Molecular Tomography through Shape-Based Reconstruction Using Spherical Harmonics Parameterization

Fluorescence molecular tomography in the near-infrared region is becoming a powerful modality for mapping the three-dimensional quantitative distributions of fluorochromes in live small animals. However, wider application of fluorescence molecular tomography still requires more accurate and stable reconstruction tools. We propose a shape-based reconstruction method that uses spherical harmonics...

متن کامل

Shape-based reconstruction of dynamic fluorescent yield with a level set method.

BACKGROUND Fluorescence molecular tomography (FMT) is an optical imaging technique that reveals biological processes within small animals through non-invasively reconstructing the distributions of fluorescent agents. The primary problem in FMT with non-stationary fluorescent yield is the increase of the unknown parameters to be reconstructed. In this paper, a method is proposed to reconstruct d...

متن کامل

A fast reconstruction algorithm for fluorescence molecular tomography with sparsity regularization.

Through the reconstruction of the fluorescent probe distributions, fluorescence molecular tomography (FMT) can three-dimensionally resolve the molecular processes in small animals in vivo. In this paper, we propose an FMT reconstruction algorithm based on the iterated shrinkage method. By incorporating a surrogate function, the original optimization problem can be decoupled, which enables us to...

متن کامل

Accelerated image reconstruction in fluorescence molecular tomography using dimension reduction

With the development of charge-coupled device (CCD) camera based non-contact fluorescence molecular tomography (FMT) imaging systems, multi projections and densely sampled fluorescent measurements used in subsequent image reconstruction can be easily obtained. However, challenges still remain in fast image reconstruction because of the large computational burden and memory requirement in the in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2017